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Abstract-Results from numerical experiments of convection in porous media heated from below with 
two opposing sources of buoyancy (e.g. heat and salt) are presented. Steady-state calculations with a ‘salted 
from below’ boundary condition on composition and Dirichlet conditions on temperature in the region 
100 < Ku < 600, 10 < Le < 100, 0 i Rp < 0.4 show that Nu cc Ru’~(~ - Rp)“’ and Sh cc Ru”~L~“’ 
x (1 - Rp) ‘I*. Time-dependent simulations with +* = 1 show that flows depend dramatically on Rp at 

constant Ra and Le. When the system is ‘salted from below’, the dynamics change with increasing Rp from 
a system which evolves to a well-mixed convective steady-state, to one in which flow is chaotic with large 
amplitude fluctuations in composition, and finally to one which evolves to a conductive steady-state. For 
an initially layered salinity field, vertically stacked convection cells may exist transiently; the interface 

between the layer is highly unsteady. 

INTRODUCTION 

NATURAL convection through porous media with a 
single buoyancy source has been studied exensively 
[I, 21. Flows with two sources of buoyancy have 
received much less attention. As in studies in viscous 
fluids [3], the addition of a second source of buoyancy 
dramatically changes the dynamics of heat and mass 
transfer. Our interest is in natural hydrothermal sys- 
tems such as those along the globe-encircling system 
of mid-ocean ridges, in which the two sources of buoy- 
ancy are heat and salinity [4]. Double-diffusive flows 
are also of interest with respect to contaminant trans- 
port in groundwater and exploitation of continental 

geothermal reservoirs [5,6]. 
Two regimes of double-diffusive convection are 

commonly distinguished. When the faster diffusing 
component is destabilizing, as it is when stably strati- 
fied saltwater is heated from below, the system is 
in the diffusive regime. When the slower diffusing 
component is destabilizing, as is the case when cold 
fresh water is overlain by hot salty water, the system is 

in the finger regime. In this study, attention is focused 
on double-diffusive convection in the diffusive regime. 
Convection can occur in the diffusive regime even 
when the overall density gradient is stable and linear 

t Address for correspondence : Earth and Environmental 
Sciences Division, Los Alamos National Laboratory, Los 
Alamos, NM 87545, U.S.A. 

stability analysis predicts that infinitesimal dis- 

turbances will decay. This subcritical, finite-amplitude 
convection occurs because the diffusivity of the desta- 
bilizing component, in this case heat, is greater than 
the diffusivity of the stabilizing component, salt (i.e. 

Le > 1). 
Much of the published work regarding double- 

diffusive convection in porous media concerns linear 
stability analyses [7-141. There are several numerical 
studies of double-diffusive convection in porous 
media with horizontal temperature and composition 
gradients [ 15-171. Trevisan and Bejan [18] studied 
heat and mass transfer at steady-state in porous media 

heated from below where the buoyancy effect was due 

entirely to temperature gradients (the passive mixing 
regime). Laboratory experiments of the diffusive 

regime include studies by Murray and Chen [19] who 
investigated the onset of thermohaline convection in 

a laboratory porous medium and Griffiths [20] who 

obtained values of heat and chemical fluxes through 
an interface between two layers with different initial 

temperatures and chemical concentrations. Trevisan 

and Bejan [21] recently reviewed the literature on 
double-diffusion convection in porous media. 

In the first part of this paper, results from steady- 
state calculations of porous media heated and salted 
from below are presented in order to determine the 
effect of Ra, Le and Rp on Nu and Sh. Results from 
studies of time-dependent, finite-amplitude convective 
flows (d* = 1) are then presented. It is shown that 
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NOMENCLATURE 

longitudinal dispersivity t time 
transversal dispersivity AT temperature difference in vertical 
solute concentration (mass fraction direction 
solute in fluid) V fluid velocity (q/n) 

heat capacity s, Z Cartesian coordinate. 
solute concentration difference in vertical 

direction Greek symbols 
effective dispersion coefficient 

hydrodynamic dispersion coefficient 
molecular dispersion coefficient 

gravitational constant 
height of porous medium 

solute flux 

permeability 
kinetic energy per unit mass fluid 

time rate-of-change of KE 

Lewis number 
Nusselt number 

pressure 
Darcy velocity 

heat flux 

;‘i 
4, 
K 

:* 
* 

coefficient of thermal expansivity 
coefficient of chemical expansivity 

Kronecker delta 
thermal diffusivity of saturated porous 

medium 

viscosity 
fluid density 
heat capacity ratio, 

4+ (1 -~)(PC,),,t,,I(PC,),,,, 
porosity 

MJ 
streamfunction 
(ati/& = q_, -al///ax = q,). 

Rayleigh number 

buoyancy ratio 
Sherwood number 
temperature 

Subscripts and superscripts 
h dimensionless variables 

0 referenced to i = 0. 

flow dynamics depend strongly on Rp at fixed Ra, Le, 

and 4* in a square domain for a variety of boundary 
and initial conditions on the salinity field and for 
Dirichlet conditions on temperature. 

MATHEMATICAL FORMULATION 

where it is assumed that the fluid and matrix are 
in thermal equilibrium and K, the effective thermal 
diffusivity of the saturated medium, is constant. 

Conservation of species can be expressed as 

A two-dimensional equivalent porous medium that 
is homogeneous and isotropic is considered in this 
study. The equations governing double-diffusive con- 
vection in porous media include equations for the 
conservation of mass, momentum, energy, and 
species, and an equation of state for the fluid [22]. 
Conservation of fluid mass, assuming an incom- 
pressible fluid and no sources or sinks, can be ex- 
pressed as 

4 g +q*VC = 4D,V2C. (4) 

v*q=o. (1) 

The coefficient of hydrodynamic dispersion, D,, is 
the sum of the coefficient of molecular diffusion in a 
porous medium, OX,,, and the coefficient of mcch- 

anical dispersion, Dmech. D&, is a scalar equal to the 

molecular diffusivity of solute in the fluid multiplied 
by the tortuosity of the medium. Dmech is a function 
of fluid velocity and medium characteristics and can 
be written 

Conservation of fluid momentum is expressed by 
Darcy’s law, providing the fluid moves slowly so that 
inertial effects are negligible. as 

where k, the permeability, is isotropic and spatially 
invariant, and the fluid viscosity is taken as a constant. 

Conservation of energy can be expressed as 

rcr z +q.VT = KV’T (3) 

Dmech = (~,,-a,)\$ +a,lv16,, (5) 

where aL and ~1~ represent the longitudinal and trans- 
versal dispersivities for an isotropic porous medium, 
6,, is the Kronecker delta and Iv] = (vf+~_?)’ ‘. The 
dispersivity coefficients a,_ and aT express the het- 
erogeneity of the medium at the microscopic scale. In 
granular media, aL is of the order of the grain size ; in 
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fractured media, it is closely related to the average 
crack spacing. Transversal dispersivities are generally 
substantially smaller, often by factors of 5-100, than 

longitudinal ones. In writing equation (5), it is 
assumed that the dispersive flux of solute can be ex- 
pressed in the Fickian form. In many practical cir- 
cumstances, knowledge of the dispersivities is so 
meager that it becomes necessary to define an effective 
dispersion coefficient D = +D, which is taken as a 
constant scalar for the sake of simplicity. That practice 
has been adopted here so that attention can be focused 
on the role of chemical buoyancy @AC) in governing 
the global dynamics and not the details of dispersive 
transport. It is recognized, however, that an accurate 

and predictive model for double-diffusive convection 
in fractured porous media must eventually deal with 

the issue of anisotropy, both in permeability and dis- 
persivity, in detail. Such studies are now in progress. 

For the equation of state of the fluid, it is assumed 
that the fluid density is a function of temperature and 
concentration only 

P = POV -~(T-T”)+b(c-co)l. (6) 

sists of a 1 x 1 box (Fig. l(a)). The dimensionless 
boundary and initial conditions on 4 and fapplicable 

to all of the simulations reported are 

t+J=O, T=l at I;=0 

J=O, T=O at 2=1 

$ = 0, 4 = 0 at ,? = 0,l 

$=O, ?=O at i=O. (12) 

That is, the box has a hot bottom, a cold top and 
adiabatic sides. All walls are impermeable to flow and 
the fluid is initially cold and motionless. 

Two sets of boundary conditions on c (Fig. l(b)) 

have been studied. In the ‘salted from below’ case, 

the top and bottom walls are kept at a constant com- 

position and no salt is allowed to leave the box 
through the wide walls, 

6~1 at 2~0 

C=O at 1=1 

y=O at ~?=0,1. 

All fluid and transport properties are assumed to be 
In the ‘no flux’ case, zero flux boundary conditions 

constant except for p in the body force term of the 
on 6 along each wall are imposed. That is, no solute 
is allowed to enter or leave the domain, 

momentum equation (the Boussinesq approxi- 
mation). J=O at .?=O,l and 2=0,1. (13b) 

Equations (l)-(6) may be written in the following 
dimensionless form : 

Three sets of initial conditions on c (Fig. 1 (c)) are 

considered : the ‘empty box’ case for which 

(7) 
c=O forall.? and iati=O (14a) 

the ‘layered box’ case with two horizontal layers of 

> 

different composition, 

= v’f (8) C = 1 for 2” < 0.5 at E= 0 

C=O for 2>0.5 at t=O (14b) 

(9) and the ‘linear box’ case where e varies linearly from 

e = 1 on the bottom wall to c = 0 on the top wall, 

where $ is the streamfunction (qy = d$/&, 
qZ = -a$/&) and 

c= 1-f at i= 0. (14c) 

,? = x/H, i = z/H, i= tu/H’a 
At each time step, the flow, temperature and salinity 

fields are used to compute the spatially-averaged kin- 

$ = ‘h/K, f = (T- T,)/AT, c = (C-C,)/AC. 
etic energy per unit mass of fluid (KE), the Nusselt 
number (Nu) and the Sherwood number (S/z). KE, a 

(10) convenient measure of the vigor of the flow, is defined 
as 

The four dimensionless parameters governing the 
convective dynamics are the Rayleigh number (Ra), 
the Lewis number (Le), 4*, and the buoyancy ratio 

(RP) 

KE=;b’i [($$+($]dZdr. (15) 

NM, the ratio of the total heat transferred to the 

Ra = 
kp,wATH 

w 
) Lr=$ 

@+ d! Rp=Ec, 
0’ aAT (11) 

heat transferred by conduction alone for the imposed 
AT, is defined as 

Nu=- (16) 

D is an effective dispersion coefficient equal to 4Dh Finally, S/z, the ratio of the total solute transferred 
and is assumed to be a constant scalar. to the solute transferred by diffusion alone for the 

The non-dimensional computational domain con- imposed AC, is defined as 
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FIG. I, (a) Domain. (b) boundary conditions, (c) initial conditions. 

Sh = - 

SOLUTION METHODOLOGY 

parison with results from published numerical and 

laboratory experiments (Table I and Fig. 2). 
A nonuniform grid of 1120 elements was used in 

the steady-state calculations. These calculations were 
all performed with the ‘salted from below’ boundary 
condition and the grid was graded so that the elements 
were concentrated in the boundary layers at the top 
and bottom of the domain. A comparison of KE, 
Nu and Sh values for various grids for parameters 
Ra = 600, Le = 20, Rp = 0 (Table 2) indicates that 
the solutions obtained with the 1120 element grid are 
accurate to within less than 1%. Note that S/z is much 
more sensitive to spatial resolution than either KE or 
Nu. KE is dominated by the higher velocities in the 
domain interior and is therefore insensitive to the 

Equations (7)-(9) are solved using a Gdlerkin finite 
element code used previously for other convection 
calculations [23,24] ; details of the method are given 
in ref. [25]. Briefly, triangular finite elements with 
quadratic basis functions are used to discretize the 
conservation equations and the resulting set of 
algebraic equations is solved by Newton-Raphson 
iteration. A fully implicit scheme is used to advance 
the energy and species equations forward in time. 
Validation of the code was accomplished by com- 
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Table I. Code validation against results from numerical experiments reported in the literature 

Ra = 50, heated from below 
Ru = 600, heated from below 
Ru = 50, Le = IO, Rp = 0, heated from the side 
Ra = 50, Lr = IO, Rp = 0.5, heated from the side 

I.5 
6.6 
2.0 
2.0 

NU Sh 
This study Literature This study Literature Ref. 

5- 

4- 
+ . 

x + 

x n a 
3- + ‘:: 

z' 
. 

+ x 

0-I 1 
0 100 200 

Ra 

FIG. 2. Code validation. Numerical results using the code in 
the present study are plotted with results from laboratory 
experiments reported in the literature. . This study (aspect 
ratio of 1); x heptane and sand [28]; + water and glass 
beads [29] ; H water and glass beads [30]. No aspect ratio 
was given for the three published studies referenced here and 
the values for Ru and NM were read off published graphs. 
Note the excellent agreement between the numerical and the 

laboratory data. 

exact thickness of the boundary layers. Nu, which 
measures the thickness of the thermal boundary 
layers, shows some sensitivity to spatial resolution. 
S/z, however, a function of the much thinner chemical 
boundary layers, is very sensitive to spatial resolution. 
Elementary scaling indicates that Sh/Nu = Le”’ 

and this relationship is verified in these calculations 

(Table 2). 
Time-dependent results were obtained using both 

I.5 WI 
6.6 ]271 
2.1 9.7 9.7 ]l51 
2.1 15.0 IS.0 [I51 

uniform grids of 800 elements and graded grids with 
1120 elements and time steps on the order of 10m4- 

IO-‘. Additional calculations with finer spatial and 
temporal resolution were performed to verify the 

accuracy of the solutions. For the ‘salted from below’ 
boundary condition, simulations using 800 uniform 
elements overestimate the thickness of the chemical 
boundary layers at the top and bottom of the domain. 
However, major features predicted by the 800 element 
grid do not appear to change when a finer grid is used. 

In the example illustrated in Fig. 3, values for Sh, 

essentially a measure of the chemical boundary layer 
thickness, are underestimated by about 20%. The flow 
and temperature fields and the composition field in 

the flow interior, however, are well-resolved, with KE 

and Nu values accurate to within a few percent. There- 

fore, in some cases, the great additional com- 
putational expense associated with achieving grid 

independence was not believed to be justified. The 
resolution question is more difficult for chaotic flow 

solutions because, by definition, chaotic flows are 
highly sensitive to small differences in variable values 
and therefore to small differences in resolution. Simu- 

lations of flows performed at a variety of spatial and 
temporal resolutions suggest that the chaotic flows 
reported here are indeed chaotic, as evidenced by the 
fact that running average KE, Nu and Sh values and 
the broadband character of the corresponding power 

spectra are preserved. 

RESULTS 

In the following sections, the results of the numeri- 

cal simulations are presented. The steady-state results 
are presented first, followed by discussion of the time- 

Table 2. Spatial resolution comparison for steady-state calculations (Ru = 600, 
Le = 20, Rp = 0) 

Number of 
finite elements 

800 
1000 
II20 
1600 
1760 
2240 
3200 
6400 

Grid KE NU Sh Sh/Nut 

uniform 1689 6.84 27.3 3.99 
graded 1691 6.65 30.4 4.57 
graded 1691 6.64 29.1 4.57 

uniform 1690 6.76 29.3 4.33 
graded 1690 6.64 29.9 4.50 
graded 1690 6.64 29.6 4.46 

uniform 1690 6.70 31.6 4.72 
uniform 1690 6.67 31.4 4.71 

t Elementary scaling analysis predicts that Sh/Nu z (LE) I”, which in this 
case is (20) I:2 = 4.47. 
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FIG. 3. Code verification. Kinetic energy (KE), Nusselt num- 
ber (Nu) and Sherwood number (Sh) vs time for porous 
media heated from below with the ‘salted from below’ bound- 
ary condition and ‘empty box’ initial condition on com- 
position. The parameters of this problem arc Ra = 600. 
Le = 20. 4* = I. and Rp = I. The various lines represent 
different spatial resolution: (--) 800 elements on a uni- 
form grid ; (-, .) 1600 elements on a uniform grid ; (- - -) 
1120 elements on a graded grid with elements concentrated 
near the top and bottom walls; and (-) 2240 elements 
also on a graded grid. Note that Ke and Nu change < 1% 
among the various grids. Sh values, however, are under- 

estimated by the 800 element grid by _ 20%. 

dependent calculations. Since the primary interest 
here is in the effect of the ratio of chemical to thermal 
buoyancy, Rp, constant values are used for the other 
dimensionless parameters in the time-dependent simu- 
lations: Ru = 600 and Le = 20 and $* = 1. 

Steudy-state 
A series of steady-state calculations for a porous 

medium heated from below was performed to detcr- 
mint the effect of Lc and Rp on Nu and Sh. Note that 
the term 4* is not an explicit parameter in the steady- 
state problem. (The permeability and D, of course. 
depend on the porosity, 4). For the ‘salted from below’ 
boundary condition on the salinity field, 36 convective 

steady-state solutions were obtained in the range 

100 < RLI < 600. IO < Lo < 100 and 0 < Rp < 0.4. 
At Ra = 100. the planform consisted of a single con- 
vcction cell. For Ra = 150 and Ru = 300, the stcady- 
state solution consisted of two side-by-side convection 
cells. For Ra = 600, a four-cell planform was 

obtained. Although a detailed study of steady vs 
unsteady regimes for this problem was not performed, 
in general, convective steady-state solutions did not 
exist at higher Rp values. The steady-state results arc 
given in Figs. 4 and 5. 

Figure 4(a) shows a plot of NM vs Le at Rp = 0.2 
for different RN values. These results show that Nu is 
essentially independent of Lr. Obviously, at low Rp 

the flow held is determined by the transfer of heat, 

not solute; the solute behaves as a nearly passive 
tracer. However, the thickness of the chemical bound- 
ary layer, and hence S/r, does depend on Lr. A plot 
of S/r vs Le (Fig. 4(b)) shows that S/I increases (i.e. 
the chemical boundary layer becomes increasingly 
thinner) with increasing Lc. The effect of Rp on Nu 
and S/r is shown in Figs. 5(a) and (b). These plots 
show that Nu and Sh both decrease with increasing 
Rp for a given Ru and Lc. 

Regression analyses of the results shown in Figs. 4 
and 5 leads to the parametric relationships VU -X 
Rtr’ ‘(I -R/I)’ ’ and Sit ‘X Ru’ ‘Lr’ ‘(I - Rp)’ ’ 
(with the correlation coeficicnt equal to greater than 

0.99). These results agree well with those of Trevisan 
and Bejan [18]. These authors summarize the various 
relationships between NM and Ra reported in the 
literature and from their own work for pure thermal 
convection; all fall in the range Nu ‘x Rd where 
0.5 < 11 < I. They also report Sh cx RcI”~L~“’ based 
on scaling analyses and numerical experiments for 
combined heat and mass transfer in the passive mixing 

(Rp = 0) case. 
For the no flux’ boundary condition, it is always 

possible to obtain a convective steady-state solution 
that is a function of RN and is completely independent 
of Rp and Lc. The salinity field is homogeneous in the 

steady-state. The second law of thermodynamics for 

a binary fluid with no Soret or DuFour processes 
dictates that the composition must eventually homo- 
gcnize. 

Time-dependmtp ‘sulted,from helow’ 

‘Empty-box’. Time-dependent simulations with Rp 
ranging from 0 to 3 were obtained for the ‘salted from 
below’ boundary condition and the ‘empty box’ initial 
condition. For Rp = 0, corresponding to the problem 
of pure thermal convection with a passive tracer. the 
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FIG. 4. (a) Nu vs Lewis number (Le) and (b) Sh vs Le at steady-state for the ‘salted from below’ boundary 
condition on composition. Calculations were performed for Rp = 0.2 and a range of Rayleigh numbers 

(W. 
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RP 

FIG. 5. (a) Nu vs buoyancy ratio (Rp) and (b) Sh vs Rp at steady-state for the ‘salted from below’ boundary 
condition on composition. Calculations were performed for Le = 20 and a range of Rayleigh numbers 

(W. 

flow and temperature fields rapidly (ix 0. I 1) reach a 
convective steady-state consisting of two side-by-side 
convection cells elongated in the vertical direction. 
The steady-state velocity, temperature and con- 
centration fields for Rp = 0 are shown in Fig. 6. The 
flow consists of rising hot fluid, with a high solute 
concentration, in the center of the domain and colder 
fluid, with a lower solute concentration, sinking along 

the adiabatic and impermeable side walls. Thin tem- 
perature and much thinner composition boundary 
layers are found at the top and bottom of the domain 
and the interior is well-mixed and nearly homo- 
geneous. 

Nu vs time plots for six of these simulations are 
given in Fig. 7. At early time, each of these plots shows 

several large spikes which correspond physically to 
the transient associated with the onset of convection 
from the quiescent initial state. For the passive tracer 
and low Rp values, the systems evolve to a convective 
steady-state. At intermediate Rp values, the systems 
remain unsteady and at high Rp values, the system 
evolves toward a conductive steady-state with NM = 1. 

For low Rp values, the systems evolve to a con- 

vective steady-state consisting of four side-by-side 
convection cells. The time taken to reach the steady-state 
increases roughly linearly with increasing Rp. During 
the evolution to a convective steady-state, flow is oscil- 
latory. The oscillations take the form of ‘sloshing’ 

between two planforms. In one planform, the two 
outside convection cells are wider at the top and the 
two inside cells are wider at the bottom. In the other, 
the reverse is true, the two outside cells are wider at 
the bottom and the two inside cells are wider at the 
top. Oscillatory flow is characteristic of double- 
diffusive convection [3]. A physical explanation for 
oscillatory flow is easily offered. As fluid is heated 
from below, it becomes less dense and begins to rise. 
As it rises, the fluid encounters a cooler and less saline 

environment. As heat diffuses faster than salt in this 
system, the fluid loses heat more rapidly than it loses 
salt. This cooler but salty fluid is denser than the 
surrounding fluid environment and the fluid sinks. As 
it sinks into the warmer, more saline fluid environ- 
ment, the fluid heats up before it becomes much 
saltier, again owing to the different diffusivities of 
heat and salt in the system, and so the fluid becomes 
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FIG. 6. Steady-state velocity, temperature, and composition 
field plots for passive tracer case (2-cell planform) with 
Ra = 600, Le = 20. Rp = 0 and the ‘salted from below’ 
boundary condition. A graded grid with II20 elements was 
used to produce these plots. The contour interval is 2 for $ 
and 0.2 for ? and c. The flow consists of rising hot fluid, 
with a high solute concentration. in the center of the domain 
and colder fluid, with a lower solute concentration, sinking 

along the adiabatic and impermeable side walls. 

buoyant and rises again. As time increases, convection 
and diffusion act to decrease the temperature and 
salinity gradients in the flow interior. At low Rp, the 
thermal buoyancy forces eventually overwhelm the 
negative buoyancy forces of the salinity field and a 
convective steady-state with thin compositional and 
thermal boundary layer is reached. 

For intermediate Rp, convection evolves to a 
chaotic state in which regions of sharp temperature 
and salinity gradients are highly mobile in time and 
space. As Rp increases, a motionless brine layer forms 
and increases in thickness at the bottom of the domain., 

confining convection to the upper part of the system. 
The difference between the convective dynamics in the 
low Rp and intermediate Rp cases is illustrated in the 

KE phase plots and power spectra shown in Figs. 
8 and 9. Figure 8(a) shows the KE phase plot for 
Rp = 0.25. Here, the KE-Kk trajectory spirals into a 
stable fixed point. The KE phase plot for Rp = 0.75 is 

shown in Fig. S(b). In this case, the KE-Kk trajectory 
follows an irregular orbit in a loosely defined region 
of phase space and never reaches a fixed point. Figure 

9(a) gives the KE power spectrum for Rp = 0.25. 

This power spectrum contains a single dominant 
frequency along with its harmonics. The KE power 
spectrum for Rp = 0.75 is shown in Fig. C>(b). In 
this case. the spectrum is characterized by broadband 
noise. 

At high Rp, convection is characterized at early 

time by flow confined to the upper part of the domain. 
The system eventually evolves to a steady-state where 
the velocity is zero everywhere and the temperature 
and salinity fields are conductive. 

‘LUJWP~~ has’. Time-dcpcndent simulations were 
performed with Rp ranging from 0 to 2 for the ‘salted 
from below’ boundary condition and the ‘layered box’ 

initial condition. For the passive tracer case (Rp = 0). 
the composition layers rapidly break down; the 
steady-state field plots for this case arc identical to 

those shown in Fig. 6. Nu time series plots for four of 
thcsc simulations are given in Fig. IO. 

For Rp = 0.25. the initially layered salinity field 

also rapidly breaks down and the system evolves to a 
convective steady-state. At intermediate Rp values, 
the system is characterized at early time by oscillatory 
convection in each composition layer. These layers arc 
separated by a highly mobile inter&cc which oscillates 

between concave up and concave down (Fig. I I ). At 
later time, this interrace bccomcs highly distorted, and 
convection becomes chaotic. At high Rp, the flow field 
at early time consists of vertically stacked convection 
cells with a nearly horizontal interface between the 

layers. At later time, thcsc systems evolve to a static 
steady-state. This static steady-state, with stationary 
fluid and conductive temperature and salinity profiles. 
is the same steady-state reached at high Rp values 
for the ‘empty box’ initial condition. However. the 
transition between solutions which appear to be per- 
mancntly unsteady and solutions which evolve to a 
static steady-state, occurs at a lower Rp value for the 

‘layered box’ initial condition than for the ‘empty box’ 
initial condition. 

‘Linear /mu’. Finally, the ‘linear box’ initial con- 
dition for a system with the ‘salted from below’ 
boundary condition was considered. The dynamics of 

this system as a function of Rp are similar to the 
‘empty box’ and the ‘layered box’ cases. The system 
evolves to a convective steady-state at low Rp and to 
a conductive steady state for high Rp. At intermediate 
Rp, the system is characterized by chaotic flows. Solu- 
tions with vertically stacked convection cells were 
ncvcr obtained. 
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FIG. 7. Nu vs time plots for porous media heated from below with the ‘salted from below’ boundary 
condition and ‘empty box’ initial condition on composition. Simulations were performed for Rp values 
between 0 and 3 with Ra = 600, Z_e = 20, c$* = 1. For Rp = 0, 0.25 and 0.4, the systems evolve to a 
convective steady-state. For Rp = 0.5 and 0.75, the systems remain unsteady. At Rp = 3, the system evolves 

to a conductive steady-state (with Nu reaching I at i > 1). 

Time-dependent- ‘no jhx’ 

Time-dependent simulations were performed with 
Rp ranging from 0 to 1.5 for the ‘no flux’ boundary 
condition and the ‘layered box’ initial condition. This 
is essentially a pure mixing problem. For the passive 
tracer case (Rp = 0), the steady-state velocity and 
temperature field plots are identical to those shown in 
Fig. 6. However, the composition field at steady-state 
for these boundary conditions is homogeneous, unlike 
the composition field in Fig. 6. 

As discussed above in the section on steady-state 

results, the convective steady-state for these boundary 
conditions depends on Ra only. The evolution to this 
steady-state for the ‘layered box’ initial condition, 
however, increases in complexity with increasing Rp. 
At early time, convection is oscillatory and occurs 
in the form of vertically stacked cells. The interface 
between the two composition layers is highly mobile, 
oscillating between concave up and concave down, 
with amplitude increasing with time. Eventually the 
interface reaches the top or bottom of the domain, 
‘cracks’, and the composition field rapidly homo- 
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FIG. 8. KE phase plots showing the trajectory in KGKk space for porous media heated from below with 
the .‘salted from below’ boundary condition and ‘empty box’ initial condition on composition. The 

parameters for this problem are (a) Ru = 600. LP = 20, QP = I and Rp = 0.25 and (b) RP = 0.75. 
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Rc. 9. KE power spectra for porous media heated from below with the ‘salted from below’ boundary 
condition and ‘empty box’ initial condition on composition. The parameters for this problem are (a) 

Ra = 600. Lr = 20. b* = I and Rp = 0.25 and (b) Rp = 0.75. 

genizes. It is noted that Griffiths [20], in his exper- 
imentai work, observed the interface between two 
layers with different initial temperature and chemical 
concentrations to be distorted and nonplanar for low 
Rp. Finally, for Rp > 1, the system evolves to a static 
quasi-steady-state on a thermally diffusive time scale, 
i-, 1 (or t z H’CTIS- ‘). That is, at i E 1 the tem- 
perature and salinity fields are conductive and the 
velocity is zero everywhere ; however, the salinity field 
will eventually homogenize and these systems too will 
evolve to a convective steady-state which is a function 
of Ra only. It is expected that the lifetime of the quasi- 
steady-state characterized by conduction is i z Le. 

CONCLUSIONS 

Convective flows through porous media heated 
from below in a square domain with two opposing 
sources of buoyancy (heat and salt) have been inves- 
tigated for a variety of boundary and initial conditions 
on the salinity field. Steady-state calculations with the 
‘salted from below’ boundary condition in the region 
100 c Ra < 600, 10 < Le i: 100, 0 < Rp < 0.4 show 

that Nu cc Ra3”(l - Rp)“’ and Sh cc Ra”‘Le”‘( I - 
Rp)‘:‘. Time-dependent simulations with 4* = 1 
show that the flow dynamics depend strongly on Rp. 

When the system is ‘salted from below’, the dynamics 
of convection for low Rp are similar to the passive 
tracer case. The systems evolve to a convective steady- 
state. The evolution to this steady-state increases in 
complexity with increasing Rp due to oscillations in 
the flow. At intermediate Rp, convection is char- 
acterized by chaos. At high Rp, systems evolve to a 

static steady-state with conductive temperature and 
salinity profiles. These flow dynamics are basically the 
same regardless of the initial conditions on the salinity 
field. When no salt is allowed to enter or leave the 
domain, the system evolves to a convective steddy- 
state independent of Rp. However, the system reaches 
a conductive quasi-steady-state for large Rp on a ther- 
mai diffusion time scale (in 1). For an initially lay- 
ered composition field, for both the ‘salted from 
below’ and ‘no flux boundary conditions considered 
here, vertically stacked convection cells exist tran- 
siently. The interface between the layer is highly 
unsteady and regions of sharp temperature and sal- 
inity gradients are mobile in time and space. 
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conditions and ‘layered box’ initial condition on composition. Simulations were performed for various Rp 
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FIG. 11. (a) Velocity. (b) temperature and (c) salinity field plots at i = 0.3-0.35 for porous media heated 
from below with the ‘salted from below’ boundary condition and ‘layered box’ initial condition on 
composition. The parameters for this problem are Ra = 600, Le = 20, d* = 1 and Rp = 0.75. The contour 

interval is 2 for rj and 0.2 for F and e. The composition layers are separated by a highly mobile interface. 
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This study suggests that double-diff‘usive con- 
vection may indeed occur in natural hydrothermal 
systems. In systems with relatively low chemical buoy- 13. 

ancy, convection with very thin chemical boundary 
layers at the top and bottom of the systems may exist ; 14. 

the interior of the system would be homogeneous. The 
chaotic numerical simulations reported here suggest 

that temperature and salinity may vary greatly in both 
15. 

time and space in natural systems. Additional studies 
which explicitly consider the role of porosity, 4, are 

now in progress. 16. 
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CONVECTION THERMOHALINE DANS UN MILIEU POREUX CHAUFFE PAR LE BAS 

R&sum&On prtsente des r&ultats sur des calculs numkriques de convection dans les milieux 
poreux chauffis par le bas, avec deux sources oppos&es de flottement (chaleur et salinitk). Les calculs de 
regime permanent avec une condition de composition “salie par le bas” aux limites et de Dirichlet 
pour la temptrature, dans la rkgion 100 i Ra < 600, 10 i Le i 100, 0 < Rp < 0,4, montrent que 
Nu cc Ra’15(1 -Rp)‘j2 et Sh cc Ra’j’Le”‘(l -Rp)‘12. Des simulations dtpendent fortement de Rp pour Ra 
et Le constants. Quand le systime est “sali par le has”, le changement dynamique avec Rp croissant pour 
un systtme tvolue d’un Ctat permanent convectif bien mtlangi: jusqu’8 un autre dans lequel l’tcoulement 
est chaotique avec des fluctuations g large amplitude dans la composition, et finalement a un autre qui 
m&e $ un &tat conductif permanent. Pour du champ de salinitt initialement stratiI%, des cellules de 
convection verticalement empilees peut exister temporairement ; l’interface entre les couches est extr& 

mement instable. 
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THERMISCH UND KONZENTRATIONSGETRIEBENE KONVEKTION IN EINEM VON 
UNTEN BEHEIZTEN POROSEN MEDIUM 

Zusammenfassung-Es wird iiber die Ergebnisse einer numerischen Untersuchung der Konvektion in einem 
von unten beheizten poriisen Medium berichtet, wobei es zwei gegengerichtet wirkende Ursachen fur 
Auftrieb gibt (beispielsweise Wlrme und Salzgehalt). Fur folgende Randbedingungen werden stationare 
Berechnungen ausgefiihrt : Es erfolgt eine Salzzufuhr von unten, und fiir die Temperatur wird die Dirichlet- 
Bedingung angewandt. Die Untersuchungen im Bereich 100 < Ru < 600. 10 < Le < 100. 0 < Rp i 0.4 
ergaben folgende Zusammenhange: Nu a Ru’~(I - Rp)“’ sowie Sh cc Ru~‘~ LE”~(~ - Rp)“?. Die zeit- 
abhangigen Simulationsrechnungen zeigen, da0 die Stromung bei konstanten Werten von Ra und Le sehr 
stark von Rp abhangt. Bei einer Salzzufuhr von unten Bndert sich das dynamische Verhalten des Systems 
mit zunehmenden Werten von Rp : Die Entwicklung fiihrt zunichst zu einem stationaren Zustand mit 
Mischkonvektion, dann zu einer chaotischen Striimung mit grol3en Fluktuationen in der Gemisch- 
zusammensetzung und schlieBlich zu einem stationlren Zustand mit reiner Leitung. Fur den Fall 
einer anfanglich geschichteten Salzverteilung kiinnen voriibergehend senkrecht iibereinandergeschichtete 

Konvektionszellen auftreten. Die Grenzflache zwischen den Schichten ist aul3erst instationlr. 

TEPMOFAJIHHHAR KOHBEKHH5I B HAI-PEBAEMOB CHB3Y IIOPHCTOfi CPEAE 

kfiOTWlS--nptiBOASTCZ4 ~3ynbTaTl4WiCneHHbIX3KCtIepHMeHTOBllOKOHBeKuHEi B HaQeBaeMOiiCHH3y 

IIOpHCTOii CpeAe lIpPi IilUIH'IIiSi TeMIIepaTypH0i-i H KONueHTpaWOHHOfi HeOAHOpOAHOCTeii,AefiCTBylo~HX 

B IIpOTBBO~OnOXCHbIX HaIIpaBneHHHX. PaC'ieTbl B CTa4HOHapHOM Cny'iae IlpH HZUIO~eHHH rpaHHYHOr0 

yCnOBHI C “ConeHoCTbIo CHH~Y" II ycnosnii &rpnxne arm TeMnepaTypbI B o6nacre 100 i Ra < 600, 
10 < Le < 100, 0 < Rp < 0,4 IIOKiDbIBiUOT, wo Nu CC Ras”(1 - RP)“~ II Sh cc Ra3’sLe”2(1 - RP)“~. 
fkCTauEiOHapHOeMOAen%ipOBaH&ieBblRBn~eTCyII&eCTBeHHyEO 3aBHCBMOCTbTeVeHAii OT 3HaYeHWI Rp npe 
IIOCTOIlHHblX 3HaYeHHfIX Ra H Le. npH HWIOlKeHBH Ha CHCTeMy yCnOBHn '%OneHOCTH CHW3yw C pOCTOM 

3Ha'IeHHII Rp IIpOHCXOAHT L-IepeXOA OT XOpO,IIO nep‘WeuIaHHOr0 KOHBeKTHBHOrO yCTOiiWBOr0 COCTOII- 

HAII K COCTOIIHUW), KOrAa TeVeHHe KBJISleTCR XaOTH'IeCKHM C 60JIblIlHMH aM,UIHTyAHblMH KOne6aHIiKMw 

COCTPBL El,HaKOHeu,K COCTOltHHIO,ptI3BHBalOIueMyCX B KOHAyKTHBHOe yCTO&iHBOe. B yCnOB&iXx nepso- 
Ha4anbnoro paccnoenun norm conemcm BepTHKanbHo pacnonoxeHHbre nveiiKH KoHBeKumi Moryr 
HaXOAtiTbCIl B HeCTaLUiOHapHOMCOCTOIlHUB II rpamua pa3Aena MeXAy CnOxMB nBnneTcn Kpai-iHe Heyc- 

TOiiYHBOfi. 


